
Conduit
Efficient Video Compression for Live VR Streaming

Gregory Rose
Aakash Patel



Live VR streaming:

Livestreaming 360° panoramic 4K 3D video from a 
panoramic camera to a client’s HMD.

Live VR streaming



Many events to livestream in VR



■ 3D 4K video: 20 Mbps
■ US Average Internet: 11 Mbps
■ 4G: 8 Mbps

Source: Akamai

Problem: VR needs a lot of bandwidth 



Solution: View optimization

View optimization: optimize, or compress the video 
for user’s view (what they can see)

■ Inputs
○ Decoded frame of a high resolution 360° 3D video
○ Orientation of the viewer’s head

■ Output
○ View optimized image frame, blurred around edges



Original image

360° 4K Panorama (one eye)



Crop out the area behind you



Blur unfocused outer regions

Human eye is lower resolution in outer region

*Blur increased 7x for demonstration



10% compression rate

■ Crop frame to 50%, then shrink to 1/9 the size
■ 50° x 50° uncompressed focus window

○ Only ~3% of original frame size
■ Result: ~10% size of original

○ In terms of raw pixels



Conduit makes VR streaming practical

■ 4K 3D Video: 18 Mbps (H.264 encoded)
○ More to stream reliably!

■ Average Internet speed (US): 11 Mbps
■ 4G: 8 Mbps
■ Conduit: 1.8 Mbps*
■ We only use ~10% of the bandwidth*

*Assuming video compression is linear



■ Decreased bandwidth, but...
■ Motion-to-update (MTU) latency: time from when 

you move your head, until you see the updated 
view-optimized frame on the HMD.

■ Internet latency now matters!
■ View optimization adds additional latency
■ To compensate, predict the user’s head pose and 

optimize the entire pipeline.

Bandwidth-latency tradeoff



Latency results

■ Unoptimized motion to update latency: 150 ms
■ Optimized motion to update latency: 75 ms
■ Average frame rate: 50 FPS = 19 ms/frame

○ Display: 12 ms
○ Load textures: 7 ms
○ Video reading/Optimization: 0 ms (latency hiding)

■ Run on a Samsung Chronos 7
○ NVIDIA GT 630M
○ Intel Core i7 2.3 GHz with 4 cores



1. Buffered video loading in separate thread.
2. Render thread takes frames if video available, 

doesn’t wait
3. Using Pixel Buffer Objects to stream 

asynchronously to OpenGL textures
4. View-optimization in a separate thread

Many minor optimizations, e.g. simplifying data 
structures, optimizing OpenGL API usage

Optimizations



Demo
Bellagio Fountains



■ Oculus runs unreliably
○ Sometimes display takes 10ms, sometimes 100ms

■ Over 20 hours of build issues
○ Tried 4 different versions of Ubuntu, Mac, and also 

Windows across 2 computers
○ Could use the “simulator”, but would miss out on key 

qualitative data, like how noticeable blur and lag was.
■ Documentation 

○ Oculus SDK not fully documented

Challenges with implementation



Things we didn’t have time to do

■ OpenCV with CUDA and OpenGL support
■ CUDA video decoder
■ Client: resize image on graphics card, don’t go through CPU
■ Profile with NSpire
■ Multithreaded optimizer
■ Resubmit command buffers using global constants
■ Figure out performance leak in Oculus
■ Test 4000x4000 video for fixed-function hardware
■ OpenCV as native RGB, not BGR to avoid swizzle
■ Copy only cropped portion of image
■ Asynchronous timewarp
■ Server-Client setup
■ Much more...



Questions?
Thank you


